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INTRODUCTION

Aerospace structures are often subjected to random excitations. One major source of

random excitations is the air turbulence, which may be generated by natural geo-thermal

processes, afflux of a propulsion system, flight maneuver, or explosions in a battle field.

Depending on the way in which such random excitations interact with a structure, they can be

classified into two types: the external (or additive) excitations and the parametric (or

multiplicative) excitations. In the equations of motion, external excitations appear as

inhomogeneous terms, whereas parametric excitations appear in the coefficients of the

unknowns.

Aerospace structures are often operated into the nonlinear regime due to elevated

temperature or large deformation. Furthermore, certain fluid-structure interaction phenomena

are known to be highly nonlinear, e.g., stall flutter, vortex induced vibration, and high angle

of attack during maneuver.

The objective of the research project is to develop solution techniques for nonlinear

aerospace structures under either additive or multiplicative random excitations, or both. The

required solutions include probability densities or statistical properties of structural response to

random excitations, as well as reliability of such structures to fulfill their intended functions.
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Z j =f (X,t) + gjt(X,t)Wk(t); j = 1, 2, ... , N; k = 1, 2, ... ,M (1)

where fj and g, are nonlinear functions, and Wk(t) are random excitations. The possibility for

exact solutions exists only when Wk(t) are Gaussian white noises. In this case X(t) is a Markov

vector, whose probability density p(x) at the state of statistical stationarity is governed by the

following reduced Fokker-Planck equation [e.g. 1]

a3 G =0 (2)ax

where

Gj = Aj(x)p(x) a [Bj,(x)p(x)] (3)
2 axJk

Aj(x) =-fj(x) + irK,, g ,, gj,(x) (4)
aXr

Bj,(x) = 21rK,, gj, g,, (5)

and where Kt, is the cross-spectral density of Wt(t) and W,(t). In Eqs. (2) - (5), a lower case

symbol represents a possible value of the corresponding upper case random quantity. The

second order partial differential equation, Eq. (2), is solved with the condition G, = 0 at all the

boundaries. We have obtained previously solutions for a class of nonlinear systems, called the

class of generalized stationary potential [2-41.

The present effort is directed at relaxing some idealized assumptions. In some

aeronautical applications, the excitations on a structure are sometimes irregular intermittent short

pulses, which can be reasonably modeled as a white noise; however, it may be non-Gaussian.
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In this case, Eq. (2) is replaced by the following partial differential equation of an infinite order.

1 2 1 a2_____,,(Aip) - 2- -xx (A-jp) + 5-f x, a ax
axi 2! axiax, 3! axL8xjaXkt (6)

1 (D
-4! Oxcx.8x 8x (D-kP) +. ...... = 0

where Ai and Bij have been defined in Eqs. (3) and (4), whereas C•,, Dj, etc., are calculated

according to

Cqk = lim 1EE[AXiAXAXkIX(t) =X] (7)
41t-0 AEt

Dijkl =f lim I-] E [A X, A Xj A Xk A X, I X ( t) = x ]
DU --0 A x](8)

...........

In Eqs. (7) and (8), AXj = Xi(t+At) - X,(t), etc. A closed form solution for Eq. (6) is clearly

impossible.

A perturbation scheme is, therefore, devised to obtain an approximate solution for non-

Gaussian white noise excitations. For simplicity, consider the case of a single white noise

excitation, which may be treated as a sequence of independently arriving impulses, each with

a random magnitude Y. The probability density of Y need not be symmetrical. If the average

arrival rate of the random impulses is X, then the departure from Gaussianity can be measured

by the products X E[Y"+2] where n are integers. A Gaussian white noise represents the limiting

case X E(Y÷'1] -- 0 for any n > 0. To account for non-Gaussianity, let
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XE[Y"*'] = iE"/,, n = 0, 1, 2, .. (9)

Then an approximate solution to Eq.(6) may be taken in the form of [5]

p(x) = PO0(x) [1 + EQ,(x) + E2 Q2(x) + ... 1 (10)

Detailed solutions for QI(x) and Q2 are given in [5].

Two specific nonlinear systems, under external and parametric excitations respectively,

are investigated in detail. Typical results are illustrated in Figs. 1 and 2. These analytical

results compared favorably with the Monte Carlo simulation results. It can be seen that the

effect of non-Gaussianity in the excitation is significant for the externally excited system, but

negligible for the parametrically excited system, even though the two systems share the same

probability distribution when the impulsive excitation is Gaussian. Moreover, increasing level

of nonlinearity in the parametrically excited system tends to reduce the effect of excitation non-

Gaussianity, whereas the opposite is true for the externally excited system. For practical

purposes, an external impulsive noise excitation may be treated as a Gaussian white noise if the

product of the average pulse arrival rate and the relaxation time of the dynamical system is about

20 or larger [5].

METHOD OF WEIGHTED RESIDUAL

When a system does not belong to the class of generalized stationary potential, an exact

probabilistic solution is presently unobtainable. Various approximation techniques have been

developed in the past, the most recent one being the dissipation energy balancing technique

proposed by Cai and Lin [6]. To explain this particular technique, consider a second order
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nonlinear system, governed by

S+ H(X,X) =jf(X,2)W1 (t) (11)

The reduced Fokker-Planck equation associated with system (10) is given by

x2ax,"x,2 ax 8fx 1x2 )
X2a *(XI ,X2) + a- ( [ -H(x,,x2) + -rKjf,(xl,x2) J Ip (x1,x)}aX2  a2 (12)

ax2
02

where p "(x, ,x2) is the stationary probability density of the response for system (11). Let us

suppose that the oscillator does not belong to the class of generalized stationary potential,

therefore, an exact solution p" (x, ,x2) for Eq.(12) is presently not obtainable. Since the class

of generalized stationary potential is the broadest solvable class known to-date which includes

a large class of linear and nonlinear systems, a logical approximation scheme is to replace the

original system (11) by an equivalent nonlinear system within the class of generalized stationary

potential, say

X + h(X,X2) = f, (X, X) W,(t) (13)

Note that the right hand sides of Eqs.(11) and (13) can be made the same. The strategy is to

find an h(X,X) function within the class of generalized stationary potential which is closest to

the original H(X,X) function. The criterion proposed in [6] for selecting such an h(X,X)

function is that the average dissipation energy remains the same for the substituting and the

substituted systems.

The dissipation energy balancing criterion has been generalized to the criteria of zero
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weighted residual in [7]. It can be shown [7] that such criteria are equivalent to

AM =EI[h(X1 ,X2)-H(XX 2 )] alM(X,X 2 ) 0 (14)ax2

where X, = X, X2 = X, and M(X,, X2) is a suitable weighing function of X, and X2, and

E[ ] denotes the ensemble averaging with respect to the approximate probability density

p(x1 ,x,). The residual Am depends on the choice of M. By judiciously selecting the weighing

functions, the approximation can be made closer and closer to the exact probability density. The

choice of M = X2 is equivalent to the requirement of dissipation energy balancing, which

remains the most appropriate and crucial. The remaining criteria proposed in [7] are of the form

M = X2X1 where k = 0, 1, 2, ... , n.

It is of interest to note that the well-known procedure of equivalent linearization [8] is

a special case of the present procedure, in which h(x1 , X2) is assumed to be linear, namely

h(X1 ,X2) = otX 1 + OX.. However, the equivalent linearization procedure is unsuitable to treat

parametric excitations; thus, its applicability is restricted to the case of external excitations,

namely, when fi functions in Eq.(11) are constants. Another special case is the procedure of

equivalent nonlinear systems [9], proposed also for the case of external random excitations, but

allowing the H function in Eq. (11) to be nonlinear. It is expected that neither of the special

cases is as accurate as the method of weighted residual, because in each of these procedures the

approximation is selected only from a sub-class within the much larger exactly solvable class of

generalized stationary potential.

Approximate probability densities obtained from three different procedures, namely,
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equivalent linearization, equivalent nonlinear system, and weighted residual, are compared in

Figs. 3 and 4. It is seen that the method of weighted residuals is, indeed, consistently superior.

COMBINED HARMONIC AND RANDOM EXCITATIONS

Consider the following equation of motion

+ 2 'weX + (0oX + h(X,) = f f(X,X) sin(jpt) + (t) (15)

where t(t) is a broad-band random process, playing the role of external excitation. The system

is also excited by sinusoidal parametric excitations sin(jpt); j = 1,2,...,N. A sinusoidal

excitation sin(jt) is important only when near tuning occurs; namely, when I j, - 2(0 1 is

small. Otherwise, the presence of the sinusoidal parametric excitations can be ignored, and the

problem is reduced to one with the broad-band external excitation alone.

In the near tuning case, the stochastic averaging technique fails to de-couple the

amplitude process from the phase process. However, an exact solution procedure is devised for

a class of nonlinear systems. When exact solutions are not obtainable, approximate solutions

can be obtained by applying the method of weighted residuals. The accuracy of the approximate

results is substantiated by Monte Carlo simulations. A technical paper has been submitted for

journal publication [10]. Typical results are shown in Fig. 5.

CATASTROPHIC FAILURE

Catastrophic failure occurs when a response quantity of interest exceeds, for the first

time, a critical magnitude. The time at which a catastrophic failure occurs is known as the first-

passage time in the theory of stochastic process. For aerospace structures, the most relevant
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quantity for the catastrophic failure analysis can be either the response amplitude, or total energy

(the sum of potential and kinetic energies). Under certain conditions, such a critical quantity

may be modeled as a Markov process. The critical state is then represented by the absorbing

boundary of the process. The statistical moment t - E[T"] of the failure time T is governed

by the recursive equation

1r(Z 0)j~ dm(z)d.. + - (n + l) An, n = 0,1,2,... (16)i z dz

where zo is the initial state, which is treated as the independent variable. By definition, A =

1. The coefficients m(z0) and o2(zo) are called the drift and diffusion coefficients, and are

determined from the equations of motion, and the spectral densities of the random excitations.

Equation (16) is solved subject to the boundary conditions

IA. (z) = 0 (17)

An,. .(0) = finite

where z, is the failure state. In the special case n = 1, Eq.(17) is reduced to the well-known

Pontryagin equation [11]. It is shown that, when diffusion coefficient vanishes at a boundary,

known as a singular boundary, it must be either an entrance or a regular boundary in the sense

of Fuller, in order that the solution is physically meaningful.

A general method of solution for Eq.(16) has been devised for the following nonlinear
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system

2

t + ch(X,X) + w 0oX = I gj(X,X)tj(t) (18)

where tj(t) are broad-band noises. A technical paper documenting the detailed analysis has been

accepted for publication in the Journal of Applied Mechanics [12]. Computed results for a

Duffing oscillator is shown in Fig. 6.

FATIGUE CRACK GROWTH

From a fracture mechanics point of view, fatigue failure may be treated as propagation

of a dominant crack to a critical size. Our study is based on the following crack growth model,

y1 = g g(A,AX) Y(t) (19)

where A(t) is the size of a dominant crack, g( ) represents a crack propagation law, for

example, the well-known Paris-Erdogan law, Y(t) accounts for the random variation of material

resistance, 1A is the average number of stress maxima per unit time, and AX is the random stress

range defined as

AX(t) = Ixt)- X( 2) , !5 t < t (20)

and where t, and t2 are the times at which two neighboring extrema of random stress X(t) occur.

A procedure is developed to calculate the probability of fatigue failure, namely, for the dominant

crack to grow to a critical crack size [13]. This procedure is applicable when the fatigue crack

growth is a slow process compared with the random stress process, which is the case with the
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high cycle fatigue. In the special case in which the stress is a narrow-band stationary Gaussian

process, analytical expressions have been obtained for the probability densities of the crack size,

the fatigue life, and the liability function.

Calculations have been carried out for the case of a central crack, depicted in Fig. 7.

The computed probability density is illustrated in Fig. 8, along with Monte-Carlo simulation

results.

CONCLUDING REMARKS

In this report, we have high-lighted the research accomplishments during the two years

under grant G-AFOSR-91-0073. A total of ten publications have been generated, with

acknowledgement to the AFOSR support. It is hoped that the information provided in these

highlights will direct an interested reader to more detailed accounts in the quoted references.
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